北大青鸟
厚德 精技 乐业 自强
当前位置:主页 > 技术学校 > 正文

程序员该如何转型

                                  时间:2017-11-22 17:55                             作者:北大青鸟佳音校区                             来源:北大青鸟佳音校区

  目前,人工智能已经变成一个越来越受欢迎的方向。普通程序员,该如何转向人工智能的方向呢?这是知乎上的一个问题。本文是北大青鸟佳音校区对此问题的一个回答的归档版。相比原回答的内容有所增加。关于学习方法的回答可以用以下几个问题概括:我要学什么?我应该怎样学习?我如何去学习?换言之就是:学习目标,学习方针与学习计划。学习目标比较清楚,就是踏入AI领域这个门。学习方针就是先培养兴趣,然后在学习中结合实践,这种方式学习效果好,而且不容易让人放弃。有了学习方针,就可以开始制定学习计划。

程序员该如何转型

  首先要了解这个领域,建立全面的视野,培养充足的兴趣,然后开始学习基础,这时应选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。

  下面是关于每个阶段的具体介绍:

  领域了解

  在学习任何一门知识之前,首先第一步就是了解这个知识是什么?它能做什么事?它的价值在什么地方?如果不理解这些的话,那么学习本身就是一个没有方向的舟,不知道驶向何处,也极易有沉船的风险。了解这些问题后,你才能培养出兴趣,兴趣是最好的引路人,学习的动力与持久力才能让你应付接下来的若干个阶段。关于机器学习是什么,能做什么,它与深度学习以及人工智能的关系,可以看我写的博客 从机器学习谈起:

  1.知识准备

  如果你离校过久,或者觉得基础不牢,最好事先做一下准备复习工作。“工欲善其事,必先利其器”。以下的准备工作不多,但足以应付后面阶段的学习。

  数学:复习以下基本知识。线性代数:矩阵乘法;高数:求导;概率论:条件与后验概率。其他的一些知识可以在后面的学习的过程中按需再补;

  英文:常备一个在线英文词典,例如爱词霸,能够不吃力的看一些英文的资料网页;

  FQ:可以随时随地上Google,这是一个很重要的工具。不是说百度查的不能看,而是很多情况下Google搜出来的资料比百度搜的几十页的资料还管用,尤其是在查英文关键字时。节省时间可是对提升学习效率很重要的。

  2.机器学习

  机器学习的第一门课程首推Andrew Ng的机器学习。这门课程有以下特点:难度适中,同时有足够的实战例子,非常适合刚开始学习的人。cs229 这门课程我这里不推荐,为什么,原因有以下:

  时间:cs229 的时间太早,一些知识已经跟不上当今的发展,目前最为火热的神经网络一笔带过。而Cousera上神经网络可是用了两个课时去讲的!而且非常详细;

  教学:Ng在cs229 时候的教学稍显青涩,可能是面对网络教学的原因。有很多问题其实他都没有讲清楚,而且下面的人的提问其实也很烦躁,你往往不关心那些人的问题。这点在Coursera上就明显得到了改善,你会发现Ng的教学水平大幅度改善了,他会对你循循善诱,推心置腹,由浅入深的教学,在碰到你不明白的单词术语时也会叫你不要担心,更重要的,推导与图表不要太完善,非常细致清晰,这点真是强力推荐;

  字幕:cs229 的字幕质量比Coursera上的差了一截。Coursera上中文字幕翻译经过了多人把关,质量很有保证;

  作业:cs229 没有作业,虽然你可以做一些,但不会有人看。这点远不如Coursera上每周有deadline的那种作业,而且每期作业提交上去都有打分。更重要的是,每期作业都有实际的例子,让你手把手练习,而且能看到自己的成果,成就感满满!

  3.实践做项目

  学习完了基础课程,你对机器学习就有了初步了解。现在使用它们是没有问题的,你可以把机器学习算法当作黑盒子,放进去数据,就会有结果。在实战中你更需要去关心如何获取数据,以及怎么调参等。如果有时间,自己动手做一个简单的实践项目是最好的。这里需要选择一个应用方向,是图像(计算机视觉),音频(语音识别),还是文本(自然语言处理)。这里推荐选择图像领域,这里面的开源项目较多,入门也较简单,可以使用OpenCV做开发,里面已经实现好了神经网络,SVM等机器学习算法。项目做好后,可以开源到到 Github 上面,然后不断完善它。实战项目做完后,你可以继续进一步深入学习,这时候有两个选择,深度学习和继续机器学习。

  4.深度学习

  深度学习:深度学习是目前最火热的研究方向。有以下特点:知识更新快,较为零碎,没有系统讲解的书。学习Java开发,就来北大青鸟佳音校区!

更多帮助请咨询专业指导老师

【立即咨询】

联系方式

咨询热线:010-68351303
在线报名

热点资讯



    专注、专业

    专注计算机教育20年

    好专业、好未来

    热门专业,高新就业

    理实一体化教学

    全程实践教学,好学易懂

    技能+学历

    学高端技能,拿大专学历

学院地址:北京市西城区北礼士路100号       站点地图|XML地图

Copyright © 2006-2019 北京佳音旗舰科技发展有限公司 All Rights Reserved. 业务电话:15001151742  京ICP备19015071号